Optimization of the Jaccard index for image segmentation with the Lovász hinge

نویسندگان

  • Maxim Berman
  • Matthew B. Blaschko
چکیده

The Jaccard loss, commonly referred to as the intersection-over-union loss, is commonly employed in the evaluation of segmentation quality due to its better perceptual quality and scale invariance, which lends appropriate relevance to small objects compared with per-pixel losses. We present a method for direct optimization of the per-image intersection-over-union loss in neural networks, in the context of semantic image segmentation, based on a convex surrogate: the Lovász hinge. The loss is shown to perform better with respect to the Jaccard index measure than other losses traditionally used in the context of semantic segmentation; such as cross-entropy. We develop a specialized optimization method, based on an efficient computation of the proximal operator of the Lovász hinge, yielding reliably faster and more stable optimization than alternatives. We demonstrate the effectiveness of the method by showing substantially improved intersection-overunion segmentation scores on the Pascal VOC dataset using a state-of-the-art deep learning segmentation architecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Evaluating the Jaccard-Tanimoto Index on Multi-core Architectures

The Jaccard/Tanimoto coefficient is an important workload, used in a large variety of problems including drug design fingerprinting, clustering analysis, similarity web searching and image segmentation. This paper evaluates the Jaccard coefficient on the the Cell/B.E.processor and the Intel R ©Xeon R ©dual-core platform. In our work, we have developed a novel parallel algorithm specially suited...

متن کامل

The subset-matched Jaccard index for evaluation of Segmentation for Plant Images

We describe a new measure for the evaluation of region level segmentation of objects, as applied to evaluating the accuracy of leaf-level segmentation of plant images. The proposed approach enforces the rule that a region (e.g. a leaf) in either the image being evaluated or the ground truth image evaluated against can be mapped to no more than one region in the other image. We call this measure...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

Modified CLPSO-based fuzzy classification System: Color Image Segmentation

Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.08790  شماره 

صفحات  -

تاریخ انتشار 2017